

Institute of Informatics - Institute of Neuroinformatics



# Learning Autonomous, Vision-based, Agile Flight

Davide Scaramuzza & Elia Kaufmann

http://rpg.ifi.uzh.ch

# Related Work on Learning Vision-based Flight

### Learning monocular reactive UAV control in cluttered natural environments

Task: Collision free flight in a forest Network input: Images from forward-facing camera

Network output: desired lateral speed

**Training methodology:** Supervised Learning with recorded data from human pilot. After an initial training on the expert data, the policy is refined using Dataset Aggregation.

#### Limitations:

- 2D sideway motion only (roll left or right),
- vehicle dynamic not taken into account
- constant linear speed (<1.5m/s)



Ross, Melik-Barkhudarov, Shankar, Wendel, Dey, Bagnell, Hebert, Learning monocular reactive UAV control in cluttered natural environments, ICRA'13

### CAD2RL - Real single-image flight without a single real image

**Task:** Follow the hallway, do obstacle avoidance **Network input:** Images from forward-facing camera

#### Network output: desired heading angle

**Training methodology:** Reinforcement Learning in simulation, the network is ported to the real platform without any fine-tuning

#### Limitations:

- 2D stop-rotate-go motion,
- vehicle dynamic not taken into account
- constant linear speed (<1m/s)</li>

### Fly in Maze

- Confined space
- Random obstacles
- Low altitude



Sadeghi, Levine, CAD2RL - Real single-image flight without a single real image, RSS'17

### Learning to fly by crashing

Task: Collision-free navigation in indoor scenes

**Network input:** 3 image from forward/left/right-facing camera

**Network output:** turn left, go straight, turn right

**Training methodology:** Supervised learning on hand-recorded data

### Limitations:

- 2D stop-rotate-go motion,
- vehicle dynamic not taken into account
- constant linear speed (<0.5m/s)



Gandhi, Pinto, Gupta, Learning to fly by crashing, IROS'17

### A Machine Learning Approach to the Visual Perception of Forest Trails for Mobile Robots

Task: Follow the forest trail

**Network input:** Image from forward-facing camera

**Network output:** turn left, go straight, turn right

**Training methodology:** Supervised learning on hand-recorded data

### Limitations:

- 2D motion,
- vehicle dynamic not taken into account
- constant linear speed (<2m/s)



Giusti, Guzzi, Ciresan, Lin He, Rodríguez, Fontana, Faessler, Forster, Schmidhuber, Di Caro, Scaramuzza, Gambardella, A Machine Learning Approach to the Visual Perception of Forest Trails for Mobile Robots, RAL'16 PDF PPT Datasets YouTube Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness

Task: Follow the forest trail

**Network input:** Image from forward-facing camera

**Network output:** heading angle & lateral offset to forest trail

**Training methodology:** Supervised learning on hand-recorded data

### Limitations:

- 2D unicycle motion,
- vehicle dynamic not taken into account
- constant linear speed (<2m/s)</li>



Smolyanskiy, Kamenev, Smith, Birchfield,

Toward low-flying autonomous may trail navigation using deep neural networks for environmental awareness, IROS'17

### DroNet: Learning to Fly by Driving

**Task:** Follow an urban road and stop with obstacles

**Network input:** Image from forward-facing camera

**Network output:** steering angle & probability of collision

**Training methodology:** Supervised learning from car and bicycle data

### Limitations:

- 2D unicycle motion,
- vehicle dynamic not taken into account
- speed <2m/s</li>



DroNet is a convolutional neural network that can safely drive a drone in the streets of a city.

Loquercio, Maqueda, Del Blanco, Scaramuzza, DroNet: Learning to Fly by Driving, RAL'18. <u>PDF</u>. <u>Video</u>. <u>IEEE Spectrum</u> Code, datasets, and training models: <u>http://rpg.ifi.uzh.ch/dronet.html</u>

### Perception, Guidance, and Navigation for Indoor Autonomous Drone Racing Using Deep Learning

Task: Navigate through a set of gates Network input: Image from forward-facing camera

**Network output:** segmentation of gate, velocity commands are computed to align optical center with gate center. Network inference is performed onboard.

Training methodology: supervised training Limitations:

- 2D unicycle motion,
- vehicle dynamic not taken into account



Jung, Hwang, Shin, Shim, Perception, Guidance, and Navigation for Indoor Autonomous Drone Racing Using Deep Learning, RAL'18

### Learning a Controller Fusion Network by Online Trajectory Filtering for Vision-based UAV Racing

**Task:** Navigate through a set of gates as fast as possible

**Network input:** Image from forward-facing camera & platform state

**Network output:** low-level control commands (body rates & thrust)

**Training methodology:** The network is trained using an ensemble of classical controllers. Each classical controller is evaluated, the best one is chosen to imitate.

### Limitations:

- Assumes perfect knowledge of system state,
- Only works in simulation

Müller, Li, Casser, Smith, Michels,

Learning a Controller Fusion Network by Online Trajectory Filtering for Vision-based UAV Racing, CVPRW'19



# Taxonomy of Related Work on Learning Vision-based Flight

- Images to intermediate-level commands [Ross, ICRA'13], [Giusti, RAL'16], [Smolyanskiy, IROS'17], [Sadeghi, RSS'17], [Gandhi, IROS'17], [Loquercio, RAL'18], [Jung, RAL'18]
  - Output of the network: linear speed commands / desired steering angle)
  - Pros: stable
  - Cons:
    - 2D motion only
    - vehicle dynamic not taken into account
    - known state estimate
- Images to low-level control commands [Müller, CVPRW'19]
  - Output of the network: body rates & thrust
  - **Pros:** vehicle dynamic taken into account
  - Cons:
    - unstable, may crash at any time
    - works only in simulation
    - known state estimate

Can we learn **high-level commands** (e.g., waypoints) in order to take advantage of plethora of existing optimal-control algorithms for UAVs?

Loquercio, Scaramuzza, Learning to Control Drones in Natural Environments: A Survey, ICRA18 Workshop on Perception, Inference, and Learning

### What does it take to fly as **good as or better** than a human pilot?



WARNING! This drone flown is NOT autonomous; it is operated by a human pilot.Human pilots take years to acquire the skills shown in this video.Can we use drone racing as a proxy to learn agile flight?

# Why is Drone Racing important?

It raises **fundamental challenges** for robotics research:

- Real-time coupling of perception and action
- Coping with inaccurate models of sensors, actuators, environment
- Coping with **dynamically changing** environments
- Coping with **unreliable perception and state estimation**:
  - low texture
  - HDR scenes
  - motion blur







# Why is Drone Racing important?

Knowledge transfer to other domains!



# Outline

- Imitating expert trajectories
- Generalization to unseen environments
- Simulation to real-world transfer

### Deep Drone Racing: Learning Agile Flight in Dynamic Environments

### CORL 2018 Best System Paper Award <u>PDF YouTube</u>





Antonio Loquercio

René Ranftl

Alexey Dosovitskiy





Vladlen Koltun Davide Scaramuzza

# **Related Work**

| Drews CoRL'17<br>(E. Theodorou's lab) | Aggressive Deep Driving: Model Predictive Control with a CNN Cost Model |  |
|---------------------------------------|-------------------------------------------------------------------------|--|
| Pan RSS'18<br>(E. Theodorou's lab)    | Agile Autonomous Driving using End-to-End Deep<br>Imitation Learning    |  |



# Approach

### Approach







[1] Mueller, Hehn, D'Andrea: A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and feasibility verification 20

# Approach: Data Collection

Idea: imitate expert trajectory  $t_g$ 



# Approach: Data Collection

Idea: imitate expert trajectory  $t_g$ !

 $p_{C'}$ 

Gate

V.

 $p_c$ 



Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.

a

# Experiments

### Simulation Experiments with Static Gates



Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.

### Simulation Experiments with Moving Gates



### Robustness against drift in state estimation



### Robustness against drift in state estimation



### **Real World Experiments**



X Ours

- Visual Inertial Odometry
- Intermediate Pilot

🔺 Professional Pilot

Outperform Visual Inertial Odometry baseline
Experienced pilots still better

### Quantitative Results: Robustness to Occlusions

We compared the performance of our method against an handcrafted gate detector.

#### Our approach is significantly more robust to occlusions of the gate!



### Moving gates



### Qualitative Results: What is the network looking at?

Using GradCam [Selvaraju et al. 2017], we investigated which features a network uses to make control decisions.



31

# What about New Environments?

Previous system was trained for a specific environment



# What about training a policy that is only gate-specific?

### Beauty and the Beast: **Optimal Methods Meet Learning for Drone Racing**

**ICRA 2019 PDF Video** 



Philipp Foehn René Ranftl

Alexey Dosovitskiy

Davide Scaramuzza Vladlen Koltun

### Approach Overview



### DNN to Predict Gate Pose and Uncertainty



[1] Nix and Weigend, Estimating the mean and variance of the target probability distribution. In IEEE International Conference On Neural Networks, 1994.

### **Training Data**

- We collect a set of images from the forward-facing camera on the drone and associate each image with the **relative pose** of the gate with respect to the body frame of the quadrotor.
- We leverage the onboard state estimation of the quadrotor to automatically generate labelled data.



# Kalman Filter for Gate Pose

- Each gate is represented by a separate Kalman filter that fuses prior pose and new measurements over time.
- The **initial prior** is the approximate gate position.
- The **process model** is an identity.
- A **reference trajectory** is computed through all the **filtered gate poses** (e.g., minimum snap, minimum time, etc.)



### **Model Predictive Control**



### Let's sum it up

- **DNN** predicts relative gate pose and measurement covariance
- Kalman Filter fuses measurement and prior map via covariance over time
- MPC generates **feasible** predictions and commands simultaneously
- Allows for **reactive** and **stable** control of dynamic systems with high-level **DNN**







#### 3rd person view

1st person view (predicted gate pose overlaid)





initial, coarse gate poses
estimated gate poses

### 2.5 m/s





initial, coarse gate poses
estimated gate poses

2.5



October 3, 2018 – Winning the IROS 2018 Autonomous Drone Race, outracing the second-placing team by a factor of two. <u>Video.</u>

Madrid, Spain Octobor 3, 2018

3092018 ADR

# What about Data Generation?

- Requires a laborious and error-prone process
- Should be repeated for every new environment/gate



# What about training a policy in simulation?

### Deep Drone Racing: From Simulation to Reality with Domain Randomization

### Arxiv, 2019 PDF. <u>Video</u>





Antonio Loquercio



René Ranftl

Alexey Dosovitskiy





Koltun Davide Scaramuzza

### **Related work**

Sadeghi RSS'17 (S. Levine's lab) CAD2RL: Real single-image flight without a single real image

James CoRL'17 (A. Davison's lab) Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task

Müller CoRL'18 (V. Koltun's lab) Driving policy transfer via modularity and abstraction





# Simulation Data Generation

To achieve maximum transfer abilities, we perform **domain randomization**. Randomized features are:

- Illumination
  - Ambient light property uniformly sampled in [0,1]
  - Emissive light property uniformly sampled in [0,0.3]
- Gate Appearance
  - Shape sampled from a set of 6 diverse models
  - Color sampled from a set of 10 red/orange textures
- Background & Floor
  - Sampled from a pool of 30 diverse images

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.



### **Simulation Data Generation**

We generated a total of **100K simulated samples**.

Each sample corresponds to the first person view camera image plus the associated expert annotation (slide 8).

Data was generated according to these parameters:

- 90 experiments (each with randomized features)
- 1 lap per experiment (90s each)
- Samples saved at 12Hz



Loquercio, et al., *Deep Drone Racing with Domain Randomization*, Arxiv, 2019. <u>PDF</u>. <u>Video</u>.



Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

# Transfer to the Real Platform

### The policy trained in simulation is deployed on a real platform.

### We evaluate the **robustness** against:

- changes in the **illumination** 
  - Easy (Uniform)
  - Medium (2 light sources)
  - Hard (1 light source)
- Distractors
  - Field of View partially covered



Loquercio, et al., *Deep Drone Racing with Domain Randomization*, Arxiv, 2019. <u>PDF</u>. <u>Video</u>.

# Difficult Illumination (one light source)



### 1st Person view

# 3rd person view

3x

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

### **Robustness Against Distractor**





### 1st Person view

# 3rd person view



Loquercio, et al., *Deep Drone Racing with Domain Randomization*, Arxiv, 2019. <u>PDF</u>. <u>Video</u>.

### Quantitative Results: Sim2Sim transfer

We evaluated the performance of a policy trained in simulation in an environment *unseen* at training time (background, illumination and gate shape changes).

**Measure**: Task Completion, which is 100% when 5 laps are completed without crashing.

**Main finding**: In order to generalize to previously unseen setups, it is necessary to randomize all the features together.



### Quantitative Results: What is important for transfer?

We evaluated which features are the most important to unlock transfer.

Measure: RMSE on real world data (annotated by the model-based expert in hand-held mode).





Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

### What is important for transfer? Main Findings

It is possible to make the following observations:

- Illumination is the most important of the randomization factors.
- Gate shape randomization has the least effect.

Main reasoning: Gates are very similar in simulation and real world, but environments' characteristics are very different in the two domains.

|          | Illumination |            | No Illumination |            |
|----------|--------------|------------|-----------------|------------|
|          | Texture      | No Texture | Texture         | No Texture |
| Shape    | - 0.199      | 0.213      | 0.243           | 0.311 -    |
| No Shape | - 0.207      | 0.225      | 0.265           | 0.339 -    |

Loquercio, et al., *Deep Drone Racing with Domain Randomization*, Arxiv, 2019. <u>PDF</u>. <u>Video</u>.

### Quantitative Results: Simulated vs Real World Data

We compared the performance of a policy trained in simulation and one trained from real world data collected from the test track.

Measure: Task Completion, 100% if 5 laps are completed without crashing.

**Main Conclusion**: The simulated policy outperforms the real one where the latter has no sufficient data coverage.



Loquercio, et al., *Deep Drone Racing with Domain Randomization*, Arxiv, 2019. <u>PDF</u>. <u>Video</u>.

# Sim2Real for Drone Racing

- Does not need to collect data for every new environemnt
- Robust to changes in the environemnt





Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

# Conclusions

- Hybrid systems based on machine learning (for perception) and models (for control) are more robust than systems based on exclusively one of the two.
- Given enough data, it is possible to train a robust perception system with data generated only in simulation.
- Several technical challenges have to be addressed before reaching super-human performance:
  - Low-latency Control & Perception
  - Long Term Planning
  - Adaptive Perception

