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Related Work on Learning Vision-based Flight



Learning monocular reactive UAV control in cluttered natural environments

Task: Collision free flight in a forest

Network input: Images from forward-facing 
camera

Network output: desired lateral speed

Training methodology: Supervised Learning 
with recorded data from human pilot. After an 
initial training on the expert data, the policy is 
refined using Dataset Aggregation.

Limitations:
• 2D sideway motion only (roll left or right), 

• vehicle dynamic not taken into account

• constant linear speed (<1.5m/s)

Ross, Melik-Barkhudarov, Shankar, Wendel, Dey, Bagnell, Hebert, 
Learning monocular reactive UAV control in cluttered natural environments, ICRA’13



CAD2RL - Real single-image flight without a single real image

Task: Follow the hallway, do obstacle avoidance

Network input: Images from forward-facing 
camera

Network output: desired heading angle

Training methodology: Reinforcement Learning 
in simulation, the network is ported to the real 
platform without any fine-tuning

Limitations:
• 2D stop-rotate-go motion, 

• vehicle dynamic not taken into account

• constant linear speed (<1m/s)

Sadeghi, Levine, 
CAD2RL - Real single-image flight without a single real image, RSS’17



Learning to fly by crashing

Task: Collision-free navigation in indoor scenes

Network input: 3 image from 
forward/left/right-facing camera

Network output: turn left, go straight, turn 
right

Training methodology: Supervised learning on 
hand-recorded data

Limitations: 
• 2D stop-rotate-go motion, 

• vehicle dynamic not taken into account

• constant linear speed (<0.5m/s)

Gandhi, Pinto, Gupta, 
Learning to fly by crashing, IROS’17



A Machine Learning Approach to the Visual Perception 
of Forest Trails for Mobile Robots

Task: Follow the forest trail

Network input: Image from forward-facing 
camera

Network output: turn left, go straight, turn 
right

Training methodology: Supervised learning on 
hand-recorded data

Limitations: 
• 2D motion, 

• vehicle dynamic not taken into account

• constant linear speed (<2m/s)

Giusti, Guzzi, Ciresan, Lin He, Rodríguez, Fontana, Faessler, Forster, Schmidhuber, Di Caro, Scaramuzza, Gambardella,
A Machine Learning Approach to the Visual Perception of Forest Trails for Mobile Robots, RAL’16

PDF PPT Datasets YouTube

http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf
http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pptx
http://www.leet.it/home/giusti/website/doku.php?id=wiki:forest
https://youtu.be/umRdt3zGgpU


Toward low-flying autonomous MAV trail navigation using deep neural networks for 
environmental awareness

Task: Follow the forest trail

Network input: Image from forward-facing 
camera

Network output: heading angle & lateral offset 
to forest trail

Training methodology: Supervised learning on 
hand-recorded data

Limitations: 
• 2D unicycle motion, 

• vehicle dynamic not taken into account

• constant linear speed (<2m/s)

Smolyanskiy, Kamenev, Smith, Birchfield, 
Toward low-flying autonomous mav trail navigation using deep neural networks for environmental awareness, IROS’17



DroNet: Learning to Fly by Driving

Task: Follow an urban road and stop with 
obstacles

Network input: Image from forward-facing 
camera

Network output: steering angle & probability 
of collision

Training methodology: Supervised learning 
from car and bicycle data

Limitations: 
• 2D unicycle motion, 

• vehicle dynamic not taken into account

• speed <2m/s

Loquercio, Maqueda, Del Blanco, Scaramuzza, DroNet: Learning to Fly by Driving, RAL’18. PDF. Video. IEEE Spectrum
Code, datasets, and training models:  http://rpg.ifi.uzh.ch/dronet.html

http://rpg.ifi.uzh.ch/docs/RAL18_Loquercio.pdf
https://youtu.be/ow7aw9H4BcA
http://spectrum.ieee.org/automaton/robotics/drones/ai-powered-drone-mimics-cars-and-bikes-to-navigate-through-city-streets
http://rpg.ifi.uzh.ch/dronet.html


Perception, Guidance, and Navigation for Indoor Autonomous Drone Racing Using 
Deep Learning

Task: Navigate through a set of gates

Network input: Image from forward-facing 
camera

Network output: segmentation of gate, 
velocity commands are computed to align 
optical center with gate center. Network 
inference is performed onboard.

Training methodology: supervised training

Limitations:
• 2D unicycle motion, 

• vehicle dynamic not taken into account

Jung, Hwang, Shin, Shim, 
Perception, Guidance, and Navigation for Indoor Autonomous Drone Racing Using Deep Learning, RAL’18



Learning a Controller Fusion Network by Online Trajectory Filtering for Vision-based 
UAV Racing 

Task: Navigate through a set of gates as fast as 
possible

Network input: Image from forward-facing 
camera & platform state

Network output: low-level control commands 
(body rates & thrust)

Training methodology: The network is trained 
using an ensemble of classical controllers. Each 
classical controller is evaluated, the best one is 
chosen to imitate.

Limitations:
• Assumes perfect knowledge of system state, 

• Only works in simulation 

Müller, Li, Casser, Smith, Michels, 
Learning a Controller Fusion Network by Online Trajectory Filtering for Vision-based UAV Racing, CVPRW’19



Taxonomy of Related Work on Learning Vision-based Flight
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• Images to intermediate-level commands [Ross, ICRA’13], [Giusti, RAL’16], [Smolyanskiy, IROS’17], [Sadeghi, RSS’17], 
[Gandhi, IROS’17], [Loquercio, RAL’18], [Jung, RAL’18]

• Output of the network: linear speed commands / desired steering angle)
• Pros: stable
• Cons: 

• 2D motion only
• vehicle dynamic not taken into account
• known state estimate

• Images to low-level control commands [Müller, CVPRW’19]

• Output of the network: body rates & thrust
• Pros: vehicle dynamic taken into account
• Cons: 

• unstable, may crash at any time
• works only in simulation 
• known state estimate

Loquercio, Scaramuzza, Learning to Control Drones in Natural Environments: A Survey, ICRA18 Workshop on Perception, Inference, and Learning

Can we learn high-level
commands (e.g., waypoints) 

in order to take advantage of plethora 
of existing optimal-control algorithms 

for UAVs?
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What does it take to fly as good as or better than a human pilot?

WARNING! This drone flown is NOT autonomous; it is operated by a human pilot.
Human pilots take years to acquire the skills shown in this video. 

Can we use drone racing as a proxy to learn agile flight?
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It raises fundamental challenges for robotics research:

 Real-time coupling of perception and action

 Coping with inaccurate models of sensors, actuators, environment

 Coping with dynamically changing environments

 Coping with unreliable perception and state estimation: 

- low texture 

- HDR scenes

- motion blur

Why is Drone Racing important?



Why is Drone Racing important?

Delivery SurveillanceSearch and Rescue

Knowledge transfer to other domains!

Inspection
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Outline
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 Imitating expert trajectories

 Generalization to unseen environments

 Simulation to real-world transfer



Deep Drone Racing:
Learning Agile Flight in Dynamic Environments

CORL 2018
Best System Paper Award

PDF YouTube

Elia Kaufmann Antonio Loquercio René Ranftl Alexey Dosovitskiy Vladlen Koltun Davide Scaramuzza

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


Related Work
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Pan RSS’18
(E. Theodorou’s lab)

Agile Autonomous Driving using End-to-End Deep 
Imitation Learning

Drews CoRL’17
(E. Theodorou’s lab)

Aggressive Deep Driving: Model Predictive Control 
with a CNN Cost Model



Approach
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Images

30Hz

Approach
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Camera Trajectory Generation

Position / Velocity?

High Level ControlLow Level Control
Thrust + Bodyrates

100Hz

Motors
Motor Commands

1kHz

Neural Network
10Hz

Waypoint & Speed

Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


𝒑𝑔 ∈ ℝ3

𝒑𝑔

Approach
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𝑑 𝑡𝑠

Image Neural Network 𝑥, 𝑦, 𝑣 ∈ ℝ3 Trajectory 𝑡𝑠 [1]

Image coordinates Speed

[1]  Mueller, Hehn, D’Andrea: A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and feasibility verification



Idea: imitate expert trajectory 𝑡𝑔

Approach: Data Collection

𝒑𝑐′

𝑡𝑔 [1]

𝑑

𝒑𝑔

𝒗

𝒑𝑐

21Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


Idea: imitate expert trajectory 𝑡𝑔!

Approach: Data Collection

22

𝑥, 𝑦, 𝑣 ∈ ℝ3

𝒑𝑐′

𝑡𝑔

𝑑

𝒑𝑔

𝒗

𝒑𝑐

Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


Experiments

23Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


Simulation Experiments with Static Gates

24Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s
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Simulation Experiments with Moving Gates

Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


Robustness against drift in state estimation

First Person ViewThird Person View
Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


First Person ViewThird Person View

Robustness against drift in state estimation

Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


Real World Experiments
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Ours

 Outperform Visual Inertial Odometry baseline

 Experienced pilots still better

Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


We compared the performance of our method against an handcrafted gate detector.

Quantitative Results: Robustness to Occlusions

Our approach is significantly more robust to occlusions of the gate!

Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s


Moving gates
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First Person ViewThird Person View

Kaufmann et al., Deep Drone Racing, CORL’18, Best System Paper Award. PDF. Video.

http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s
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Using GradCam [Selvaraju et al. 2017], we investigated which features a network uses to make 

control decisions. 

Qualitative Results: What is the network looking at?

[Selvaraju et al. 2017] Grad-CAM: Visual explanations from deep network via gradient-based localization, ICCV, 2017



What about New Environments?

32

 Previous system was trained for a specific environment

What about training a policy that 
is only gate-specific?



Beauty and the Beast:
Optimal Methods Meet Learning for Drone Racing

ICRA 2019
PDF Video

Elia Kaufmann René Ranftl Alexey Dosovitskiy Vladlen Koltun Davide ScaramuzzaMathias Gehrig Philipp Foehn

http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc


Approach Overview

optimal
trajectory
executed

by our 
PAMPC

reference

target gate

variance

[𝑟, 𝜃, 𝜓, 𝜙]

[𝜎𝑟
2, 𝜎𝜃

2, 𝜎𝜓
2 , 𝜎𝜙

2 ]

Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video
Deployed to win the IROS Autonomous Drone Racing Competition, IROS’18. Video.

http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w


DNN to Predict Gate Pose and Uncertainty

Pose Mean Loss: 𝜃𝐶𝑁𝑁
∗ , 𝜃𝒛

∗ = argminσ𝑖=1
𝑁 𝒚𝑖 − 𝒛𝑖 2

2

Covariance Loss[1]:  − log 𝑝 𝒚 𝒛𝑖 , 𝝈
2) ∝ σ𝑗=1

𝑀 log 𝜎𝑗
2 +

𝑦𝑗−𝑧𝑗
2

𝜎𝑗
2

CNN

MLP

MLP pose: 𝒛 = [𝑟, 𝜃, 𝜓, 𝜙]

variance: [𝜎𝑟
2, 𝜎𝜃

2, 𝜎𝜓
2 , 𝜎𝜙

2 ]

[1] Nix and Weigend, Estimating the mean and variance of the target probability distribution. In IEEE International Conference On Neural 
Networks, 1994.



Training Data

• We collect a set of images from the forward-facing camera on the drone and associate 
each image with the relative pose of the gate with respect to the body frame of the 
quadrotor.

• We leverage the onboard state estimation of the quadrotor to automatically generate 
labelled data.

Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video
Deployed to win the IROS Autonomous Drone Racing Competition, IROS’18. Video.

http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w


Kalman Filter for Gate Pose

• Each gate is represented by a separate 
Kalman filter that fuses prior pose and 
new measurements over time.

• The initial prior is the approximate gate 
position.

• The process model is an identity.

• A reference trajectory is computed 
through all the filtered gate poses (e.g., 
minimum snap, minimum time, etc.)

Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video
Deployed to win the IROS Autonomous Drone Racing Competition, IROS’18. Video.

http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w


Model Predictive Control

Optimization Problem

minන
𝑡0

𝑡𝑓

𝐿𝑎(𝒙, 𝒖) + 𝐿𝑝(𝒛) 𝑑𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒓 𝒙, 𝒖, 𝒛 = 𝟎
𝒉 𝒙,𝒖, 𝒛 ≤ 𝟎

Costs
𝐿𝑎 = 𝒙𝑇𝑸𝑥𝒙 + 𝒖𝑇𝑸𝑢𝒖

Model 
Dynamics
𝒙 = 𝒑, 𝒒, 𝒗
𝒖 = 𝒇𝑻, 𝝎

𝑥0
𝑥1
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𝑥2
𝑥3
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෤𝑥𝑒

optimal
trajectory

reference

Sequential Quadratic 

Programming

iterating at 100Hz

Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video
Deployed to win the IROS Autonomous Drone Racing Competition, IROS’18. Video.

http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w


Let’s sum it up

Plan

ExecuteSense

Gate

Detection

DNN

Gate

Filter

• DNN predicts relative gate pose and 
measurement covariance

• Kalman Filter fuses measurement and 
prior map via covariance over time

• MPC generates feasible predictions and 
commands simultaneously

• Allows for reactive and stable control of 
dynamic systems with high-level DNN



Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video
Deployed to win the IROS Autonomous Drone Racing Competition, IROS’18. Video.

http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w






On arxiv next week: Beauty and the Beast - Optimal Methods 
Meet Learning for Drone Racing

October 3, 2018 – Winning the IROS 2018 Autonomous Drone Race, 
outracing the second-placing team by a factor of two. Video.

https://www.youtube.com/watch?v=9AvJ3-n-82w


What about Data Generation?

44

What about training a 
policy in simulation?

 Requires a laborious and error-prone process

 Should be repeated for every new environment/gate



Deep Drone Racing:
From Simulation to Reality with Domain Randomization

Arxiv, 2019
PDF. Video

Elia Kaufmann Antonio Loquercio René Ranftl Alexey Dosovitskiy Vladlen Koltun Davide Scaramuzza

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ


Related work
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James CoRL’17
(A. Davison’s lab)

Transferring end-to-end visuomotor control from 
simulation to real world for a multi-stage task

CAD2RL: Real single-image flight without a single 
real image

Sadeghi RSS’17
(S. Levine’s lab)

Müller CoRL’18
(V. Koltun’s lab)

Driving policy transfer via modularity and 
abstraction
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To achieve maximum transfer abilities, we perform domain randomization.  

Randomized features are:

 Illumination

- Ambient light property uniformly sampled in [0,1]

- Emissive light property uniformly sampled in [0,0.3]

 Gate Appearance

- Shape sampled from a set of 6 diverse models

- Color sampled from a set of 10 red/orange textures

 Background & Floor

- Sampled from a pool of 30 diverse images

Simulation Data Generation

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
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Simulation Data Generation

We generated a total of 100K simulated samples.

Each sample corresponds to the first person view camera

image plus the associated expert annotation (slide 8).

Data was generated according to these parameters:

• 90 experiments (each with randomized features)

• 1 lap per experiment ( 90s each)

• Samples saved at 12Hz

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ


Moving gates

49

Training Environments

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
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The policy trained in simulation is deployed on a real platform. 

We evaluate the robustness against:

• changes in the illumination

• Easy (Uniform)

• Medium (2 light sources)

• Hard (1 light source)

• Distractors

• Field of View partially covered

Transfer to the Real Platform

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
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Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ


Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
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We evaluated the performance of a policy trained in simulation in an environment unseen at training 

time (background, illumination and gate shape changes).

Measure: Task Completion, which is 100% when 5 laps are completed without crashing.

Main finding: In order to generalize to previously unseen setups, it is necessary to randomize all the 

features together.

Quantitative Results: Sim2Sim transfer
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We evaluated which features are the most important to unlock transfer.

Measure: RMSE on real world data (annotated by the model-based expert in hand-held mode).

Quantitative Results: What is important for transfer?

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
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It is possible to make the following observations:

• Illumination is the most important of the randomization factors.

• Gate shape randomization has the least effect.

Main reasoning: Gates are very similar in simulation and real world, but environments’ 

characteristics are very different in the two domains.

What is important for transfer? Main Findings

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
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We compared the performance of a policy trained in simulation and one trained from real 

world data collected from the test track.  

Measure: Task Completion, 100% if 5 laps are completed without crashing.

Main Conclusion:  The simulated policy outperforms the real one where the latter has no 

sufficient data coverage.

Quantitative Results:  Simulated vs Real World Data

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
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• Does not need to collect data for every

new environemnt

• Robust to changes in the environemnt

Sim2Real for Drone Racing

• Limited adaptability to the environment (sub-

optimal flying policy)

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.

https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
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Conclusions
• Hybrid systems based on machine learning (for perception) and models (for control) are 

more robust than systems based on exclusively one of the two.

• Given enough data, it is possible to train a robust perception system with data generated 

only in simulation.

• Several technical challenges have to be addressed before reaching super-human 

performance:

• Low-latency Control & Perception 

• Long Term Planning

• Adaptive Perception


