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Related Work on Learning Vision-based Flight



Learning monocular reactive UAV control in cluttered natural environments

Task: Collision free flight in a forest

Network input: Images from forward-facing
camera

Network output: desired lateral speed

Training methodology: Supervised Learning
with recorded data from human pilot. After an
initial training on the expert data, the policy is
refined using Dataset Aggregation.

Limitations:

» 2D sideway motion only (roll left or right),
* vehicle dynamic not taken into account
* constant linear speed (<1.5m/s)

Ross, Melik-Barkhudarov, Shankar, Wendel, Dey, Bagnell, Hebert,
Learning monocular reactive UAV control in cluttered natural environments, ICRA’13



CADZ2RL - Real single-image flight without a single real image

Task: Follow the hallway, do obstacle avoidance

Network input: Images from forward-facing
camera

- Confined space

Network output: desired heading angle ~ RANEHN GRSRRIES
- Low altitude

Training methodology: Reinforcement Learning
in simulation, the network is ported to the real
platform without any fine-tuning

Limitations:

* 2D stop-rotate-go motion,
* vehicle dynamic not taken into account
e constant linear speed (<1m/s)

Sadeghi, Levine,
CAD2RL - Real single-image flight without a single real image, RSS’17



Learning to fly by crashing

Task: Collision-free navigation in indoor scenes

Network input: 3 image from
forward/left/right-facing camera

Network output: turn left, go straight, turn
right

Training methodology: Supervised learning on
hand-recorded data

Limitations:

* 2D stop-rotate-go motion,
* vehicle dynamic not taken into account
* constant linear speed (<0.5m/s)

Gandhi, Pinto, Gupta,
Learning to fly by crashing, IROS’17



A Machine Learning Approach to the Visual Perception
of Forest Trails for Mobile Robots

Task: Follow the forest trail

Network input: Image from forward-facing
camera

Network output: turn left, go straight, turn
right

Training methodology: Supervised learning on
hand-recorded data

Limitations:
* 2D motion,

* vehicle dynamic not taken into account
* constant linear speed (<2m/s)

Giusti, Guzzi, Ciresan, Lin He, Rodriguez, Fontana, Faessler, Forster, Schmidhuber, Di Caro, Scaramuzza, Gambardella,
A Machine Learning Approach to the Visual Perception of Forest Trails for Mobile Robots, RAL'16
PDF PPT Datasets YouTube



http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf
http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pptx
http://www.leet.it/home/giusti/website/doku.php?id=wiki:forest
https://youtu.be/umRdt3zGgpU

Toward low-flying autonomous MAV trail navigation using deep neural networks for
environmental awareness

Task: Follow the forest trail

Network input: Image from forward-facing
camera AV,

Network output: heading angle & lateral offset
to forest trail

Training methodology: Supervised learning on
hand-recorded data

Limitations:

* 2D unicycle motion,
* vehicle dynamic not taken into account
* constant linear speed (<2m/s)

Smolyanskiy, Kamenev, Smith, Birchfield,
Toward low-flying autonomous mav trail navigation using deep neural networks for environmental awareness, IROS’17



DroNet: Learning to Fly by Driving

Task: Follow an urban road and stop with
obstacles

Network input: Image from forward-facing
camera

Network output: steering angle & probability
of collision

Training methodology: Supervised learning

DroNet is a convolutional neural network that can safely drive a drone in

from car and bicycle data the streets of a city.

Limitations:
e 2D unicycle motion,
* vehicle dynamic not taken into account
* speed <2m/s

Loguercio, Maqueda, Del Blanco, Scaramuzza, DroNet: Learning to Fly by Driving, RAL'18. PDF. Video. |IEEE Spectrum
Code, datasets, and training models: http://rpg.ifi.uzh.ch/dronet.html



http://rpg.ifi.uzh.ch/docs/RAL18_Loquercio.pdf
https://youtu.be/ow7aw9H4BcA
http://spectrum.ieee.org/automaton/robotics/drones/ai-powered-drone-mimics-cars-and-bikes-to-navigate-through-city-streets
http://rpg.ifi.uzh.ch/dronet.html

Perception, Guidance, and Navigation for Indoor Autonomous Drone Racing Using
Deep Learning

Task: Navigate through a set of gates

Network input: Image from forward-facing
camera

Network output: segmentation of gate,
velocity commands are computed to align
optical center with gate center. Network
inference is performed onboard.

Training methodology: supervised training

Limitations:
e 2D unicycle motion,
* vehicle dynamic not taken into account

Jung, Hwang, Shin, Shim,
Perception, Guidance, and Navigation for Indoor Autonomous Drone Racing Using Deep Learning, RAL'18



Learning a Controller Fusion Network by Online Trajectory Filtering for Vision-based
UAV Racing

Task: Navigate through a set of gates as fast as y, R e
possible Vo 4R N\ 0357

Lap: 1/2
Last Lap : 00:00.00

Network input: Image from forward-facing
camera & platform state

Network output: low-level control commands
(body rates & thrust)

Training methodology: The network is trained

using an ensemble of classical controllers. Each
classical controller is evaluated, the best one is
chosen to imitate.

Track 4

Limitations:

* Assumes perfect knowledge of system state,
* Only works in simulation

Miiller, Li, Casser, Smith, Michels,
Learning a Controller Fusion Network by Online Trajectory Filtering for Vision-based UAV Racing, CVPRW’19



Taxonomy of Related Work on Learning Vision-based Flight

* Images to intermediate-level commands [Rross, ICRA'13], [Giusti, RAL'16], [Smolyanskiy, IROS'17], [Sadeghi, RSS'17],
[Gandhi, IROS’17], [Loquercio, RAL'18], [Jung, RAL'18]

* Output of the network: linear speed commands / desired steering angle)
: stable
* Cons:
* 2D motion only
* vehicle dynamic not taken into account
* known state estimate

Can we learn high-level
commands (e.g., waypoints)

in order to take advantage of plethora
of existing optimal-control algorithms

* Images to low-level control commands [miiller, cvPRW19]

e Output of the network: body rates & thrust
: vehicle dynamic taken into account
* Cons:
* unstable, may crash at any time for UAVs?
e works only in simulation
* known state estimate

11
Loquercio, Scaramuzza, Learning to Control Drones in Natural Environments: A Survey, ICRA18 Workshop on Perception, Inference, and Learning



What does it take to fly as good as or better than a human pilot?

e

NYTFURY DRONE CAM O : 04 . 4

h. S
b

WARNING! This drone flown is NOT autonomous; it is operated by a human pilot.
Human pilots take years to acquire the skills shown in this video.

Can we use drone racing as a proxy to learn agile flight?



Why is Drone Racing important?

It raises fundamental challenges for robotics research:

= Real-time coupling of perception and action
= Coping with inaccurate models of sensors, actuators, environment
= Coping with dynamically changing environments
= Coping with unreliable perception and state estimation:
- low texture

- HDR scenes

- motion blur




Why is Drone Racing important?

Knowledge transfer to other domains!

Delivery Search and Rescue Surveillance Inspection

14



Outline

» Imitating expert trajectories
> Generalization to unseen environments

> Simulation to real-world transfer



Deep Drone Racing:
Learning Agile Flight in Dynamic Environments

CORL 2018

Best System Paper Award
PDF YouTube

s
Davide Scaramuzza

Elia Kaufmann Antonio Loquercio


http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Related Work

Drews CoRL'17 Aggressive Deep Driving: Model Predictive Control
(E. Theodorou’s lab) with a CNN Cost Model
Pan RSS'18 Agile Autonomous Driving using End-to-End Deep

(E. Theodorou’s lab) Imitation Learning

17
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Approach
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Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.



http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Approach

Image coordinates Speed

Image Neural Network {x,y,v} € R3 Py € R Trajectory t. 1]

[1] Mueller, Hehn, D’Andrea: A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and feasibility verification 20



Approach: Data Collection

Idea: imitate expert trajectory ¢,

Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.


http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Approach: Data Collection

Idea: imitate expert trajectory ¢!

Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.


http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Experiments

Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.



http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Simulation Experiments with Static Gates

B Network predictions

Reference Trajectory

Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.


http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Simulation Experiments with Moving Gates

e T v = 0.423775

Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.



http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Robustness against drift in state estimation

First Person View
Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award.


http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Robustness against drift in state estimation

Third Person View First Person View
Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.


http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Real World Experiments
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Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.



http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Quantitative Results: Robustness to Occlusions

We compared the performance of our method against an handcrafted gate detector.

Our approach is significantly more robust to occlusions of the gate!
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Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.



http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s
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Kaufmann et al., Deep Drone Racing, CORL'18, Best System Paper Award. PDF. Video.



http://rpg.ifi.uzh.ch/docs/CORL18_Kaufmann.pdf
https://youtu.be/8RILnqPxo1s

Qualitative Results: What is the network looking at?

Using GradCam [Selvaraju et al. 2017], we investigated which features a network uses to make

control decisions.

[Selvaraju et al. 2017] Grad-CAM: Visual explanations from deep network via gradient-based localization, ICCV, 2017 31



What about New Environments?

= Previous system was trained for a specific environment

What about training a policy that
is only gate-specific?



Beauty and the Beast:
Optimal Methods Meet Learning for Drone Racing

ICRA 2019
PDF Video

Elia Kaufmann Mathias Gehrig Philipp Foehn René Ranftl  Alexey Dosowtskly Davide Scaramuzza


http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
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Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video
Deployed to win the IROS Autonomous Drone Racing Competition, /ROS’18. Video.



http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w

DNN to Predict Gate Pose and Uncertainty

pose:z = |r,0,Y, D]

variance: [02, 05, 1/2,, aqzb ]

2
zill2
(v Yj Z])

UJ

Pose Mean Loss: 10cnn, 07 = arg mmZ L1lly: —

Covariance Loss!l:  —logp(y |z;,0%) « Z] 1loga +

[1] Nix and Weigend, Estimating the mean and variance of the target probability distribution. In IEEE International Conference On Neural
Networks, 1994.



Training Data

e  We collect a set of images from the forward-facing camera on the drone and associate
each image with the relative pose of the gate with respect to the body frame of the
quadrotor.

* We leverage the onboard state estimation of the quadrotor to automatically generate
labelled data.

Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video

Deployed to win the IROS Autonomous Drone Racing Competition, /ROS’18. Video.


http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w

Kalman Filter for Gate Pose

* Each gate is represented by a separate
Kalman filter that fuses prior pose and
new measurements over time.

* The initial prior is the approximate gate
position.

* The process model is an identity.

* A reference trajectory is computed
through all the filtered gate poses (e.g.,
minimum snap, minimum time, etc.)

Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video
Deployed to win the IROS Autonomous Drone Racing Competition, /ROS’18. Video.



http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w

Model Predictive Control
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iterating at 100Hz

Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video
Deployed to win the IROS Autonomous Drone Racing Competition, /ROS’18. Video.



http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w

Let’s sum it up

* DNN predicts relative gate pose and
measurement covariance

 Kalman Filter fuses measurement and
prior map via covariance over time

* MPC generates feasible predictions and
commands simultaneously

* Allows for reactive and stable control of
dynamic systems with high-level DNN

Gate
Filter

4

Gate
Detection
DNN

5

%
o

Execute



3rd person view 1st person view

oredicted gate pose overlaid
Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19.
Deployed to win the IROS Autonomous Drone Racing Competition, /ROS’18.



http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w

» initial, coarse gate poses
m ectimated aate nocec

3
——
EEEE
=
—
&
= "r';_‘
g



2.5

E 2

« initial, coarse gate poses
a ectimated aate noces



|
{
e’

.
TROS21NIS AWARD
for
- . -
# Autonomous Drone Racing §=

(2)
g First Place
1

October 3, 2018 — Winning the IROS 2018 Autonomous Drone Race,
outracing the second-placing team by a factor of two. Video.

07771 e |l

9


https://www.youtube.com/watch?v=9AvJ3-n-82w

What about Data Generation?

= Requires a laborious and error-prone process

= Should be repeated for every new environment/gate

What about training a
policy in simulation?



Deep Drone Racing:
From Simulation to Reality with Domain Randomization

Arxiv, 2019
PDF. Video

\
‘ ‘?
ol Oy

Elia Kaufmann Antonio Loquercio René Ranftl  Alexey Doovits‘kiy

Davide Scaramuzza


https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Related work

Sadeghi RSS’17 CAD2RL: Real single-image flight without a single
(S. Levine’s lab) real image

James CoRL'17 Transferring end-to-end visuomotor control from
(A. Davison’s lab) simulation to real world for a multi-stage task
Muller CoRL'18 Driving policy transfer via modularity and

(V. Koltun’s lab) abstraction

46



Simulation Data Generation

To achieve maximum transfer abilities, we perform domain randomization.

Randomized features are:

= |[lumination

- Ambient light property uniformly sampled in [0,1]

- Emissive light property uniformly sampled in [0,0.3]
= Gate Appearance

- Shape sampled from a set of 6 diverse models

- Color sampled from a set of 10 red/orange textures
= Background & Floor

- Sampled from a pool of 30 diverse images

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Simulation Data Generation

We generated a total of 100K simulated samples.
Each sample corresponds to the first person view camera

image plus the associated expert annotation (slide 8).

Data was generated according to these parameters:
* 90 experiments (each with randomized features)
* 1 lap per experiment ( 90s each)

* Samples saved at 12Hz

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

* Training Environments
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Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF.



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Transfer to the Real Platform

The policy trained in simulation is deployed on a real platform.

We evaluate the robustness against:

* changes in the illumination

« Easy (Uniform)
« Medium (2 light sources)

- Hard (1 light source)

* Distractors

- Field of View partially covered

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Difficult Illumination (one light source)
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Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019.


https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Robustness Against Distractor

1st Person view 3rd person view
3X

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. :



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Quantitative Results: Sim2Sim transfer

We evaluated the performance of a policy trained in simulation in an environment unseen at training
time (background, illumination and gate shape changes).

Measure: Task Completion, which is 100% when 5 laps are completed without crashing.

Main finding: In order to generalize to previously unseen setups, it is necessary to randomize all the
features together.
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Quantitative Results: What is important for transfer?
We evaluated which features are the most important to unlock transfer.

Measure: RMSE on real world data (annotated by the model-based expert in hand-held mode).

lllumination No lllumination

Texture No Texture Texture No Texture

Shape + 0.199 0.213 0.243 0.311

No Shape + 0.207 0.225 0.265 0.339

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

What is important for transfer? Main Findings

It is possible to make the following observations:
+ [llumination is the most important of the randomization factors.

- Gate shape randomization has the least effect.

)

Main reasoning: Gates are very similar in simulation and real world, but environments

characteristics are very different in the two domains.

lllumination No lllumination
Texture No Texture Texture No Texture
Shape t 0.199 0.213 0.243 0.311
No Shape + 0.207 0.225 0.265 0.339

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Quantitative Results: Simulated vs Real World Data

We compared the performance of a policy trained in simulation and one trained from real
world data collected from the test track.
Measure: Task Completion, 100% if 5 laps are completed without crashing.

Main Conclusion: The simulated policy outperforms the real one where the latter has no
sufficient data coverage.
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Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Sim2Real for Drone Racing

* Does not need to collect data for every

new environemnt

* Robust to changes in the environemnt

Loquercio, et al., Deep Drone Racing with Domain Randomization, Arxiv, 2019. PDF. Video.



https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ

Conclusions

* Hybrid systems based on machine learning (for perception) and models (for control) are

more robust than systems based on exclusively one of the two.

* Given enough data, it is possible to train a robust perception system with data generated

only in simulation.

* Several technical challenges have to be addressed before reaching super-human

performance:
Low-latency Control & Perception
Long Term Planning

- Adaptive Perception




