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Abstract— This paper presents a motion control framework
for a flying robot that takes into account the safety perception
of humans in close proximity. Human’s safety perception is
predicted based on data collected from physiological experi-
ments in a virtual reality (VR) environment. The predicted
safety perception is incorporated in optimal control of the
robot’s motion based on model predictive path integral (MPPI)
control. Compared to our previous work [1] that addressed off-
line path planning for a flying robot incorporating perceived
safety, the MPPI-based framework in this paper is able to
generate perceived-safe motion of the robot online, accounting
for changes in the environments, e.g. human position change,
in real time. This makes it applicable to dynamically changing
environments. The proposed framework is demonstrated in a
VR environment with a human in the loop.

I. INTRODUCTION

In the recent decade, multi-rotor copters have gone outside
the lab space and seen immense growth in the commercial
market for various civilian applications such as media pro-
duction, inspection, and precision agriculture. More ambi-
tious applications, e.g. for package delivery, fire fighting,
elderly care are also under investigation [2]–[4]. The in-
creasing popularity of these flying robots can be attributed
to their mechanical simplicity, ability to hover and high
maneuverability. It is expected that by 2020, the market for
these devices will attain a value of $11.2 billion with an
annual growth of over 30% [5]. The inclusion of these aerial
robots in our day-to-day lives brings immediate benefits to
society as well as individuals. However, since they often
need to fly near people and navigate in densely populated
areas, these robots also pose significant challenges in terms
of ensuring human safety and comfort during task execution.

It is a long tradition in robot control and motion planning
to focus on the robot’s safety, i.e., the ability to generate safe
collision-free paths. However, this is insufficient for robots
operating in proximity to humans, who can still feel unsafe
or uncomfortable even though the robot is guaranteed not to
collide with them. Studies of human perception have shown
that there is a sharp distinction between human perceived
safety and actual safety.
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A comfortable approach distance for a flying robot was
studied in [6] using a real robot, where the authors found
no conclusive effects of the height of the robot as well
as the comfortable distance. In [7], the influence of the
robot’s speed and repeating behavior (cyclicity) on distancing
with the robot and the interaction preference of humans was
investigated using virtual reality (VR) experiments.

On the other hand, a few design approaches to improving
humans’ comfort and acceptance of these flying robots have
been explored. Emotional encoding was proposed in [8],
where the authors suggested adding emotional components
to the drones to facilitate natural human-drone interaction.
In [9], the authors developed a set of signaling mechanisms
for a flying robot to better communicate its intent (i.e.
directionality, which were tested on real robots and human
participants). Also in our recent work [1], we presented a
path planning framework that considers the human’s safety
perception for flying robots and the comfort of the users
when they interact with flying robots.

The work mentioned above focuses on either qualitatively
studying the influence of various features of the robot on
human-aerial-robot interaction, or devising heuristic methods
to improve the acceptability of the robot by humans. In our
recent work [1], we first studied and modeled the dependence
of human’s perceived safety on an aerial robot’s position
and velocity by measuring the arousal signal of humans in
response to a flying robot in a VR environment. We then
developed a path planning framework that incorporates the
human’s safety perception model and generates paths that
are felt safe and comfortable by the humans.

This paper is an extension of our previous work [1]. The
contributions are listed as follows:

1) Our previous work [1] can only do off-line trajec-
tory generation due to the computationally-expensive
nonlinear optimization in the optimal control problem
formulation, which is not suitable for dynamically vary-
ing environments. We extend it for online trajectory
generation by invoking model predictive path-integral
(MPPI) control [10].

2) The proposed control method is implemented and tested
in a VR environment with a human in the loop to
demonstrate the socially aware behavior of the robot,
while the path planning framework in our previous
work [1] is only implemented in a simulation.

The remainder of the paper is organized as follows.
Section II introduces the data-driven model of the human’s
safety perception based on the data from VR experiments [1].



In Section III, we present the main framework, in which the
safety perception model is incorporated into the MPPI con-
trol. In Section IV, the proposed framework is implemented
and tested in the VR environment. Section V summarizes
and discusses future directions.

II. DATA-DRIVEN MODELLING OF HUMANS’
SAFETY PERCEPTION

In this section, we briefly review the data-driven modeling
of humans’ safety perception, which was already presented
in [1].

A. Virtual Reality based Data Collection

VR offers a safe, low-cost, and time efficient method to
collect data [7]. To this end, we have developed a VR test
environment to explore human-aerial-robot interactions in
a variety of experimental scenarios [11], [12]. Concurrent
psychophysiological reactions of participants are recorded in
terms of head motions and electrodermal activity (EDA), and
time-aligned with attributes of the robot’s flight path, e.g.
velocity, altitude, and audio profiles. Participants were seated
at the junction of a three-way intersection with unoccluded
paths in the forward, left, and right direction (see Fig. 1).
Three arbitrary trajectories conforming to the shape of the
intersection were chosen and reversed, for a total of six
unique trajectories (1.6 m altitude). We collected the data
from 56 participants (20 males / 36 females).

Fig. 1: A flying robot in the VR environment (an illustration
video at https://youtu.be/XnaXzdHlxUA).

We measured the EDA using skin conductance sensor, the
data from which is preprocessed by EDA analysis package,
Ledalab, to generate the phasic activation signal [13]. As ar-
gued in [1], although physiological measurements of arousal
(e.g., EDA) alone are not necessarily equivalent to perceived
safety, several pieces of evidence suggest that the EDA
measure of physiological response in our study is closely
related to people’s anxiety induced by the approaching drone.
For all experiments, the EDA signal was stronger when the
quadrotor was flying at a higher speed, with the audio on, and
at eye-height rather than overhead, but this trend decreased
across subsequent trials. Also, head motion accelerated in
the direction opposite of the quadrotor’s motion on its ap-
proach, indicating avoidance behavior. Thus, in the following
sections, we consider the EDA signal as an operational
approximation of the human’s perceived safety.

B. The Safety Perception Model

A data-driven model was also developed in [1] to predict
the phasic activation (arousal), given the robot’s position and
velocity. Let yn ∈ R denote the phasic activation, where n
is the time index. The input (feature) variable, denoted by

xn ∈R8, is the vector that contains the distance to the robot,
the rate of change of the distance, the Cartesian position
coordinates, and the velocity coordinates of the robot relative
to the human.

It was found that the phasic activation of a subject was
often influenced by some unknown factors that are not
related to the drone. Figure 2 shows the presence of such
unknown factors in one data set, where an increase in the
phasic activation in the shaded area was detected, although
the flying robot was far away and virtually invisible to the
subject. To account for the unknown factors in the data, we
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Fig. 2: Phasic activation signal induced by the flying robot.
The shaded box indicates the response, where the robot is in
the far distance (greater than 60 [m]).

hypothesize that the unexpected spike of the phasic activation
in Figure 2 is due to the change of the participant’s attention,
i.e. the participant is distracted by some other stimulus.
Inspired by the work in [14], we model the sequential
dependence of the (hidden) human’s attention using a Hidden
Markov Model (HMM). The HMM has a latent variable1 Zn
to denote two states of human’s attention:

Zn :=
{

1, if the human is attentive to the robot,
2, otherwise.

Then Zn is modeled by a Markov chain with the following
probability transition equation:

πn+1 = πnA. (1)

The vector πn := [P(Zn = 1),P(Zn = 2)] is the stochastic row
vector for the distribution over the state Zn, and A ∈ R2×2

denotes the transition probability matrix of the Markov chain.
The initial distributions π0 and A are the parameters of the
Markov chain. The output is determined as

Yn = 1{Zn=1}( fβ (Xn)+ ε)+1{Zn=2}δ , (2)

where 1A denotes the indicator function, and fβ : R8→R is
a function fβ (x) := β>φ(x), which is linearly parameterized
with β and basis φ(x), ε ∼ N (0,σ2), and δ denotes the
random source. As seen in (2), Yn depends on Xn when Zn =
1; however, Yn = δ when Zn = 2, i.e. it is modeled as an

1In this paper, we interchangeably use capital letters to denote random
variables and lower case letter to denote deterministic variables (or samples).

https://youtu.be/XnaXzdHlxUA


independent random signal. In (2), it can be seen that one
of the two regression functions, Yn = fβ (Xn) and Yn = δ , is
chosen based on the likelihood given the observation (xn,yn).

The parameter of the model was estimated by the
maximum likelihood estimation (MLE) algorithm using
Expectation-Maximization (EM) [15] and was given in [1].

III. MODEL PREDICTIVE MOTION CONTROL
WITH PERCEIVED SAFETY

The trajectory generation method in [1] is not suitable
for dynamically changing environments. For example, if the
position of the human changes, then the optimal trajectory
calculated based on the method in [1] will not be applicable
anymore. Hence, a feedback controller which takes into
account the current state is desired in such environments.
Model predictive control (MPC) has been widely used for
control tasks that involve minimization of a cost function
for performance optimization while satisfying some con-
straints [16]. In MPC, a sequence of optimal control inputs,
ut ,ut+1, · · · , is solved for a finite time horizon at every time
step t accounting for the current state xt , while usually only
the first element of the control input sequence, i.e. ut , is
executed. At the next time step t +1, the above procedure is
repeated. This receding-horizon feature of MPC introduces
feedback and makes it capable of handling dynamically
varying environments.

The safety perception model presented in Section II can
be used to create a cost function (or a constraint) in MPC,
which penalizes the robot’s paths that induce discomfort to
the human. MPC is a control technique that has been widely
used for accommodating different constraints. For the motion
control incorporating perceived safety, we choose the model
predictive path-integral (MPPI) control.

A. Brief Introduction to MPPI

The MPPI control algorithm solves stochastic optimal
control problem based on the (stochastic) sampling of the
system trajectories through parallel computation [10], [17],
[18]. Due to the sampling nature, the algorithm does not
require derivatives of either the dynamics or the cost function
of the system, which enables to handle nonlinear dynamics
and non-smooth/non-differentiable cost functions without
approximations. With the help of GPUs for expediting the
parallel computation, the MPPI can be implemented in
real time even for relatively large dimensions of the state
space (e.g. there are 48 state variables for the 3-quadrotor
control example in [10]). The computational efficiency from
paralleled stochastic sampling and the ability to directly
handle non-smooth cost functions (cf. equation (5)) make
MPPI appealing for the motion control problem in this paper.

B. MPPI Motion Control with Perceived Safety

Note that MPPI control can handle complex and/or nonlin-
ear dynamics. However, to facilitate the comparison with our
previous work [1] that uses a simple double integrator model
for the robot, in pure (i.e. not VR) simulation the double
integrator model is used again here. In the VR demonstration

Algorithm 1 Model Predictive Path Integral [17]
Given parameters:
F : Transition model given in (4);
S: Cost function given in (6);
T : Length of the finite horizon;
Choose tuning parameters:
K: Number of sample trajectories;
Σ: Co-variance of the noise εk;
λ : Temperature parameter of the Gibbs distribution in (3);
ū := (u1, . . . ,uT ): Initial control sequence;
unew: Value to initialize new control to;

repeat
0. Measure current state and save as xinit.
1. Sample K trajectories of noise,

ε̄
(k) := (ε

(k)
1 , . . . ,ε

(k)
T ), ε

(k)
t ∼N (0,Σ).

2. Roll out K sample trajectories with ε̄(k), ū, and x0
and calculate the cost S(k).

x(k)t+1 = Ax(k)t +B
(

ut + ε
(k)
t

)
, x(k)1 = xinit.

3. Calculate estimated optimal control using the costs
calculated from the K trajectories, (S(1),S(2), . . . ,S(K)), as
in (6) and

ut ← ut +
K

∑
k=1

ωkε
(k)
t , ∀t ∈ {1,2, . . . ,T},

where

ωk =
exp(−(S(k)−ρ)/λ )

∑
K
k=1 exp

(
−(S(k)−ρ)/λ

) , ρ := min
k

S(k). (3)

4. Send u1 to the actuator.
5. Update the control sequence ū as

ū← (u2, . . . ,uT−1,unew).

until mission ends.

we use a different model, obtained from system identification
of the dynamics of the robot in the VR, as explained in
Section IV. The discrete-time double integrator model for
the simplified planner dynamics of the flying robot is defined
as

xt+1 = Axt +B(ut + εt), (4)

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


0 0
0 0
∆t 0
0 ∆t

 ,
where xt ∈ R4 denotes the state vector consisting of planar
position and velocity coordinates, ut ∈R2 denotes the control
input which is planar acceleration, εt ∈R2 is independent and
identically distributed (i.i.d.) noise with normal distribution,
i.e. εt ∼N (0,Σ) with the co-variance matrix Σ, and ∆t is the
sampling interval, which is set to 0.1 second in this section.



We select the running cost as

c(x) = 1000(1C1(x))+1000(1C2(x)), (5)

where 1C : X →{0,1} is the indicator function, and

C1 = {x| fβ (x)≥ ba}, C2 = {x|collision with an obstacle}.

The first term in (5) is for penalizing the states that will
make a human feel unsafe, represented by the predicted
phasic activation exceeding some threshold ba, calculated
with fβ (·) in (2). The second term is for avoiding collisions
with obstacles. The terminal cost is selected to encourage
reaching the goal with a minimum velocity, as

φ(x) = (x− xgoal)
2 +(y− ygoal)

2 + v2
x + v2

y ,

where x= [x,y,vx,vz]
>, and (xgoal,ygoal) is the target position.

Given a trajectory of state x̄ := (x1,x2, . . . ,xT ) and control
ū := (u1,u2, . . . ,uT ), the cost of the trajectory, S(x̄, ū), is
defined as

S(x̄, ū) = φ(xT )+
T

∑
t=1

(
c(xt)+λu>k Σ

−1
εt

)
, (6)

where λ is the temperature parameter of the Gibbs distribu-
tion (or Softmax function) used in (3). Algorithm 1 describes
how the MPPI calculates the control input at every time
step [17]. Figure 3 shows the resultant flight paths based
on MPPI. Similar to [1], the threshold ba can be used as a
tuning knob to adjust the allowable discomfort level induced
by the robot to a nearby human as shown in Figure 3.
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Fig. 3: Flight paths for different threshold ba. The chosen
MPPI parameters are as follows: K = 2000,Σ = I,λ = 1,T =
50, and ū is set to zero vectors.

IV. VIRTUAL REALITY DEMONSTRATION

In this section, we implemented the MPPI based frame-
work in a VR environment to validate its use for the socially
aware motion control of a flying robot. The Unity 3D [19],
a game development editor, was used to construct the VR
environment, where the physics engine of the editor was
able to conveniently model the rigid-body dynamics of the

flying robot. We ran system identification to determine A
and B as the MPPI control presented in III needs the model
parameters. The sampling frequency for implementing the
MPPI control was selected as 25 Hz. An illustration of the
test environment is shown in Figure 4 and a video demon-
stration of the results are available at https://youtu.
be/UtWrSTDAZsw. We compared the pure motion control
with the collision avoidance using the MPPI framework (by
removing the perceived-safety-related term from the cost
function (5)) with the socially aware control incorporating
the safety perception (with ba = 1.0). The comparison results
are included in the video, from which one can see that the
flight path from the socially aware control keeps a larger
distance from the human by following a smooth arc, as
opposed to the straight-line path yielded by the collision-
avoidance motion control. Furthermore, as also demonstrated
in the video, the robot was able to react to the varying
position of the human in the VR and re-plan its path, thanks
to the feedback nature of the MPPI framework.

Fig. 4: A flying robot under the MPPI control in the VR
environment. The colored trailing line is to visualize the path.

V. CONCLUSION
We presented a framework for optimal motion control

of a flying robot incorporating the safety perception of
humans in its neighborhood. The framework builds upon
model predictive path integral (MPPI) control [10] for online
optimal control and human’s safety perception model. It
extends the earlier results from [1] for off-line trajectory
generation with the account of human’s safety perception
to online setting. The capacity of the proposed framework
to generate socially-aware paths that try to avoid human
discomfort as well as reacting to the change of environments
was demonstrated in virtual-reality based experiments with
the human in the loop.

Same as our previous work [1], the proposed framework
employs a fixed safety perception model, which may not
well account for the differences between humans and the
variation of a human’s safety perception. Our future work
will be investigating adaptive optimal control framework for
socially-aware motion planning and control for the flying
robot in the vicinity of humans, by invoking the hidden
Markov model-based reinforcement learning in [20].

APPENDIX

The accompanying video is available at https://
youtu.be/dDAfr9qkmmg.

https://youtu.be/UtWrSTDAZsw
https://youtu.be/UtWrSTDAZsw
https://youtu.be/dDAfr9qkmmg
https://youtu.be/dDAfr9qkmmg
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“Carebots,” Mechanical Engineering Magazine Select Articles, vol.
138, no. 09, pp. S8–S13, 2016.

[5] (2017) Gartner says almost 3 million personal and commercial
drones will be shipped in 2017. [Online]. Available: http:
//www.gartner.com/newsroom/id/3602317

[6] B. A. Duncan and R. R. Murphy, “Comfortable approach distance with
small unmanned aerial vehicles,” in IEEE International Conference on
Robot and Human Interactive Communication. IEEE, 2013, pp. 786–
792.

[7] ——, “Effects of speed, cyclicity, and dimensionality on distancing,
time, and preference in human-aerial vehicle interactions,” ACM
Transactions on Interactive Intelligent Systems (TIIS), vol. 7, no. 3,
p. 13, 2017.

[8] J. R. Cauchard, K. Y. Zhai, M. Spadafora, and J. A. Landay, “Emotion
encoding in human-drone interaction,” in ACM/IEEE International
Conference on Human-Robot Interaction. ACM, 2016, pp. 263–270.

[9] D. Szafir, B. Mutlu, and T. Fong, “Communicating directionality in fly-
ing robots,” in ACM/IEEE International Conference on Human-Robot
Interaction. ACM, 2015, pp. 19–26.

[10] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.

[11] C. Widdowson, H.-J. Yoon, V. Cichella, F. Wang, and N. Hovakimyan,
“VR environment for the study of collocated interaction between small
uavs and humans,” in International Conference on Applied Human
Factors and Ergonomics. Springer, 2017, pp. 348–355.

[12] T. Marinho, A. Lakshmanan, V. Cichella, C. Widdowson, H. Cui,
R. M. Jones, B. Sebastian, and C. Goudeseune, “VR study of human-
multicopter interaction in a residential setting,” in IEEE Virtual Reality
(VR), March 2016, pp. 331–331.

[13] M. Benedek and C. Kaernbach, “A continuous measure of phasic
electrodermal activity,” Journal of Neuroscience Methods, vol. 190,
no. 1, pp. 80–91, 2010.

[14] M. C. Mozer, S. Kinoshita, and M. Shettel, “Sequential dependencies
in human behavior offer insights into cognitive control,” Integrated
Models of Cognitive Systems, pp. 180–193, 2007.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society. Series B (methodological), pp. 1–38, 1977.

[16] J. B. Rawlings and D. Q. Mayne, Model predictive control: theory
and design. Nob Hill Pub. Madison, Wisconsin, 2009.

[17] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2016, pp. 1433–1440.

[18] ——, “Information-theoretic model predictive control: Theory and
applications to autonomous driving,” IEEE Transactions on Robotics,
vol. 34, no. 6, pp. 1603–1622, 2018.

[19] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2018.

[20] H.-J. Yoon, D. Lee, and N. Hovakimyan, “Hidden Markov model
estimation-based q-learning for partially observable Markov decision
process,” arXiv preprint arXiv:1809.06401, 2018.

http://www.gartner.com/newsroom/id/3602317
http://www.gartner.com/newsroom/id/3602317

	INTRODUCTION
	DATA-DRIVEN MODELLING OF HUMANS' SAFETY PERCEPTION
	Virtual Reality based Data Collection
	The Safety Perception Model

	MODEL PREDICTIVE MOTION CONTROL WITH PERCEIVED SAFETY
	Brief Introduction to MPPI
	MPPI Motion Control with Perceived Safety

	VIRTUAL REALITY DEMONSTRATION
	CONCLUSION
	References

