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Learning to Race in New Environments
Elia Kaufmann, Davide Scaramuzza

Abstract—This paper presents an ablation study of the gen-
eralization performance of navigation policies in the context
of autonomous drone racing. The approach extends on our
previous conference work presented at the conference on robotic
learning (CoRL) 2018. While our previous approach performed
very well in known environments, the performance dropped
significantly when the appearance of the environment changed
compared to the one seen at training time. To overcome this
challenge, we randomize the appearance of both the background
and the gates during data generation in simulation. We show
successful knowledge transfer to new simulated environments
and identify the most important factors needed for successful
transfer. Furthermore, we perform a neural architecture search
to identify the network with the optimal accuracy/inference time
trade-off.

SUPPLEMENTARY MATERIAL

A video illustrating our experiments can be found here:
https://youtu.be/K5EYLjmB9KA. For reference, please see the
video of our previous conference work [1]: https://youtu.be/
8RILnqPxo1s.

I. INTRODUCTION

Drone racing is an emerging sport that recently gained a lot
of media attention with races being held on an international
level. Human pilots undergo years of training to master the
sensorimotor skills involved in racing. Such skills would also
be valuable to autonomous systems in applications such as
disaster response or structure inspection, where drones must
be able to quickly and safely fly through complex dynamic
environments [2].

Enabling an autonomous drone to race through such a race
track brings up fundamental challenges in robotics in the
areas of system modeling, onboard perception, localization
and mapping, trajectory generation and optimal control. For
this reason, autonomous drone racing has attracted significant
interest from the research community, giving rise to multiple
autonomous drone racing competitions [3], [4].

One approach to autonomous racing is to fly through the
course by tracking a precomputed global trajectory. However,
global trajectory tracking requires to know the race-track
layout in advance, along with highly accurate state estimation,
which current methods are still not able to provide [5]–[7].
Indeed, visual inertial odometry [5], [6] is subject to drift
in estimation over time. SLAM methods can reduce drift
by relocalizing in a previously-generated, globally-consistent
map. However, enforcing global consistency leads to increased
computational demands that strain the limits of on-board
processing. In addition, regardless of drift, both odometry and
SLAM pipelines enable navigation only in a predominantly-
static world, where waypoints and collision-free trajectories
can be statically defined. Generating and tracking a global

Fig. 1: By combining a convolutional neural network with
trajectory generation and control methods, our vision-based,
autonomous quadrotor is able to successfully fly through race
tracks with high agility.

trajectory would therefore fail in applications where the path
to be followed cannot be defined a priori. This is usually the
case for professional drone competitions, since gates can be
moved from one lap to another.

Our approach to autonomous drone racing was presented
in [1] and does neither need accurate knowledge of the track
layout nor does it rely on a prebuilt map to localize or drift-
free state estimation. Instead of relying on a precomputed,
global trajectory, our approach directly identifies waypoints
from a single image using a CNN. These waypoints, expressed
in a body-centered frame, are used to compute minimum-
jerk trajectory segments [8] that are executed by a low-
level controller [9]. That way, our approach combines the
reactive properties of the image-based CNN prediction with
the agility and precision offered by state-of-the-art controllers.
The approach is optimized to run fully onboard on a resource-
constrained platform.

In the earlier version [1], the perception system was track
specific: it required training data from the target race track.
Therefore, significant changes in the track layout, background
appearance, or lighting would hurt performance. In order to
increase the generalization abilities and robustness of our
perception system, we propose to use domain randomiza-
tion [10]. The idea is to randomize during data collection
all the factors to which the system must be invariant, i.e.
illumination, viewpoint, gate appearance and background. We
show that domain randomization leads to a 3× increase in
closed-loop performance relative to our earlier work [1] when
evaluated in environments or conditions not seen at training
time.

Interestingly, the perception system becomes invariant not
only to specific environments and conditions but also to
the training domain. We show that after training purely in
simulation, the perception system can be deployed on a

https://youtu.be/K5EYLjmB9KA
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physical quadrotor that successfully races in the real world.
On real tracks, the policy learned in simulation has comparable
performance to one trained with real data, thus alleviating the
need for tedious data collection in the physical world.

II. RELATED WORK

A. Drone Racing

Drone racing has seen a significant increase in interest in
the robotics community in the recent years. Previous works
include approaches based on visual servoing, where a robot
is given a set of target locations that are then identified
and tracked with hand-crafted detectors [11]–[13]. Such ap-
proaches however typically fail in presence of occlusions, par-
tial visibility and motion blur. To overcome these challenges,
recent work proposed to use a learning-based approach for
identifying the next target [14]. Although working reliably in
low-speed regimes, that approach fails when used in a more
dynamic scenario due to limited agility. Image-based visual
servoing is reliable when the difference between current and
reference images is small, which is not always the case when
flying at high speed.

Another recent approach to autonomous drone racing pro-
poses to directly learn low level control commands from
images [15]. Such an end-to-end policy is agnostic to drift
in state estimation but requires a large amount of training
data since a platform-stabilizing controller has to be learned.
Furthermore, such approaches suffer from the typical prob-
lems of end-to-end control: (i) limited generalization to new
environments and platforms and (ii) difficulties in deployment
to real platforms due to high computational requirements
(requires high inference rate).

Our approach features the robustness of learning-based per-
ception while also addressing the generalization and feasibility
challenges by using modularization. We take advantage of
the perceptual awareness of CNNs to produce navigation
commands while benefiting from the high speed and reliability
of classic control pipelines.

B. Generalization to New Environments

Learning navigation policies from actual track data has a
shortcoming: the learned policy typically has poor general-
ization performance when exposed to changes in the track
appearance, such as changes in the illumination, significant
changes of the track layout or changes in the gate appearance.
Recent works propose to use domain randomization [10] to
improve the robustness of their policies [16]–[21]. Levine et
al. [22] train a collision avoidance policy purely in simulation
and deploy it on a real platform.

As in aforementioned works, we use domain randomization
to increase generalization. Our work applies this technique
to drone racing. Specifically, we identify the most important
simulation properties to randomize in order to achieve good
generalization.

III. METHOD

Our approach, explained in detail in [1], makes use of two
subsystems: perception and control. The perception system

uses a Convolutional Neural Network (CNN) to predict a goal
direction in local image coordinates, together with a desired
navigation speed, from a single image collected by a forward-
facing camera. The control system uses the navigation goal
produced by the perception system to generate a minimum-
jerk trajectory [8] that is tracked by a low-level controller [9].

A. Training Procedure
We train the perception system with imitation learning,

using automatically generated globally optimal trajectories
as a source of supervision. We refer the reader to [1] for
details about the computation of the global trajectory and
the generation of training labels. The network is trained
by minimizing a weighted MSE loss. In order to collect
diverse data, we perform visual scene randomization in the
simulated environment, while keeping the approximate track
layout fixed. Apart from randomizing visual scene properties,
the data collection procedure remains unchanged compared
to [1].

We randomize the following visual scene properties: (i) the
textures of the background, floor, and gates, (ii) the shape
of the gates, and (iii) the lighting in the scene. For (i), we
apply distinct random textures to background and floor from
a pool of 30 diverse synthetic textures (Figure 2a). The gate
textures are drawn from a pool of 10 mainly red/orange
textures (Figure 2c). For gate shape randomization (ii), we
create 6 gate shapes of roughly the same size as the original
gate. Figure 2d illustrates four of the different gate shapes used
for data collection. To randomize illumination conditions (iii),
we perturb the ambient and emissive light properties of all
textures (background, floor, gates). Both properties are drawn
separately for background, floor, and gates from uniform
distributions with support [0,1] for the ambient property and
[0,0.3] for the emissive property.

While the textures applied during data collection are syn-
thetic, the textures applied to background and floor at test
time represent common indoor and outdoor environments
(Figure 2b). For testing we use held-out configurations of gate
shape and texture not seen during training.

IV. EXPERIMENTS

We evaluate the performance of our approach in vari-
ous simulated environments. We perform an ablation study
to identify the most import factors that enable successful
transfer to new environments. Furthermore, we perform an
architecture search to identify the network with the optimal
accuracy/inference time trade-off.

A. Experimental Setup
For all our simulation experiments we use Gazebo as the

simulation engine and the RotorS extension [23] for simu-
lating the quadrotor platform. Specifically, we simulate the
AscTec Hummingbird multirotor, which is equipped with a
forward-looking 300×200 pixels RGB camera. The platform
is spawned in a flying space of cubical shape with side length
of 70 meters, which contains the experiment-specific race
track. The flying space is bounded by background and floor
planes whose textures are randomized (see Figure 2).
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(a) (b) (c) (d)

Fig. 2: To test the generalization abilities of our approach, we randomize the visual properties of the environment (background,
illumination, gate shape, and gate texture). This figure illustrates the random textures and shapes applied both at training (a)
and test time(b). For space reasons, not all examples are shown. In total, we used 30 random backgrounds during training
and 10 backgrounds during testing. We generated 6 different shapes of gates and used 5 of them for data generation and one
for evaluation. Similarly, we used 10 random gate textures during training and a different one during evaluation. a) Random
backgrounds used during training data generation. b) Random backgrounds used at test time. c) Gate textures. d) Selection of
training examples illustrating the gate shapes and variation in illumination properties.
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Fig. 3: Generalization tests on different backgrounds after
domain randomization. More comprehensive randomization
increases the robustness of the learned policy to unseen scenar-
ios at different speeds. Lines denote mean performance, while
the shaded areas indicate one standard deviation. Background
randomization has not been included in the analysis: without
it the policy fails to complete even a single gate pass.

B. Experiments in Simulation

We evaluate the generalization abilities of our approach to
environment configurations not seen during training. Specif-
ically, we drastically change the environment background
(Fig. 2b) and use gate appearance and illumination conditions
held out at training time. We compare policies that are
trained with various amount of randomization. Figure 3 shows
the result of this evaluation. As expected, if data collection
is performed in a single environment, the resulting policy
has limited generalization (red line). To make the policy
environment-agnostic, we performed domain randomization
while keeping the approximate track layout constant (details
in Sec. III-A). Clearly, both randomization of gate shape
and illumination lead to a policy that is more robust to
new scenarios. Furthermore, while randomization of a single
property leads to a modest improvement, performing all types
of randomization simultaneously is crucial for good transfer.
Indeed, the simulated policy needs to be invariant to all of the

randomized features in order to generalize well.
Surprisingly, as we show below, the learned policy can not

only function reliably in simulation, but is also able to control
a quadrotor in the real world. In Section IV-D we present
an evaluation of the real world control abilities of this policy
trained in simulation, as well as an ablation study to identify
which of the randomization factors presented above are the
most important for generalization and knowledge transfer.

C. Analysis of Accuracy and Efficiency

The neural network at the core of our perception system
constitutes the biggest computational bottleneck of our ap-
proach. Given the constraints imposed by our processing unit,
we can guarantee real-time performance only with relatively
small CNNs. Therefore, we investigated the relationship be-
tween the capacity (hence the representational power) of a
neural network and its performance on the navigation task. We
measure performance in terms of both prediction accuracy on a
validation set, and closed-loop control on a simulated platform,
using the task completion rate (explained in Figure 5) as
metric. The capacity of the network is controlled through a
multiplicative factor on the number of filters (in convolutional
layers) and number of nodes (in fully connected layers).
The network with capacity 1.0 corresponds to the DroNet
architecture [24].

Figure 4 shows the relationship between the network capac-
ity, its test loss (RMSE) on a validation set, and its inference
time on an Intel UpBoard (our onboard processing unit). Given
their larger parametrization, deeper architectures have a lower
generalization error but largely increase the computational
and memory budget required for their execution. Interestingly,
a lower generalization loss does not always correspond to
a better closed-loop performance. This can be observed in
Figure 5, where the network with capacity 1.5 outperforms
the one with capacity 2.0 at high speeds. Indeed, as shown in
Figure 4, larger networks entail smaller inference rates, which
result in a decrease in agility.

In our previous conference paper [1], we used a capacity
factor of 1.0, which appears to have a good time-accuracy
trade-off. However, in the light of this study, we select a
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Fig. 4: Test loss and inference time for different network
capacity factors. Inference time is measured on the actual
platform.
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Fig. 5: Comparison of different network capacities on differ-
ent backgrounds after domain randomization. Performance is
stated in terms of task completion rate. A task completion rate
of 100% is achieved if the drone can complete five consecutive
laps without crashing.

capacity factor of 0.5 for all our new experiments to ease
the computational burden.

D. Simulation to Real World Transfer

We now attempt direct simulation-to-real transfer of the
navigation system. To train the policy in simulation, we use
the same process to collect simulated data as in Section III-A.
The resulting policy, evaluated in simulation in Figure 3, is
then used without any finetuning to fly a real quadrotor. De-
spite the large appearance differences between the simulated
environment (Figure 2d) and the real one, the policy trained in
simulation via domain randomization has the ability to control
the quadrotor in the real world. Thanks to the abundance
of simulated data, this policy can not only be transferred
from simulation to the real world, but is also more robust to
changes in the environment than the policy trained with data
collected on the real track. As can be seen in the supplementaty
video, the policy learned in simulation can not only reliably
control the platform, but is also robust to drastic differences
in illumination and distractors on the track.
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Fig. 6: Performance comparison (measured with task com-
pletion rate) of the model trained in simulation and the one
trained with real data. With easy and medium illumination (on
which the real model was trained on), the approaches achieve
comparable performance. However, with difficult illumination
the simulated model outperforms the real one, since the latter
was never exposed to this degree of illumination changes at
training time. The supplementary video illustrates the different
illumination conditions.

To quantitatively benchmark the policy learned in simu-
lation, we compare it against a policy that was trained on
real data. We use the same metric as explained in Figure 5
for this evaluation. All experiments are repeated 10 times
and the results averaged. The results of this evaluation are
shown in Figure 6. The data that was used to train the “real”
policy was recorded on the same track for two different illumi-
nation conditions, easy and medium. Illumination conditions
are varied by changing the number of enabled light sources:
4 for the easy, 2 for the medium, and 1 for the difficult.
The supplementary video illustrates the different illumination
conditions.

The policy trained in simulation performs on par with the
one trained with real data in experiments that have the same
illumination conditions as the training data of the real policy.
However, when the environment conditions are drastically
different (i.e. with very challenging illumination) the policy
trained with real data is outperformed by the one trained in
simulation.

V. CONCLUSION

We have presented an ablation study of the generaliza-
tion performance of our previously presented approach to
autonomous drone racing in simulated environments. We an-
alyzed the influence of various degrees of domain random-
ization on the generalization performance of our navigation
policy. Furthermore, we investigated the impact of the network
capacity on both the prediction accuracy and the inference
rate. We measured the prediction accuracy both in terms of
test loss on a held-out test set, as well as in closed loop in
a previously unseen, simulated environment. We show that
domain randomization leads to a 3× increase in closed-loop
performance relative to our earlier work [1] when evaluated
in environments or conditions not seen at training time.
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